Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 56: e12443, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1420763

ABSTRACT

Amyloid fibrils are characteristic of several disorders including Alzheimer's disease (AD), with no cure or preventive therapy. Diminishing amyloid deposits using aromatic compounds is an interesting approach toward AD treatment. The present study examined the anti-fibrillogenic effects of silibinin and trans-chalcone in vitro, in vivo, and in silico on insulin amyloids. In vitro incubation of insulin at 37°C for 24 h induced amyloid formation. Addition of trans-chalcone and silibinin to insulin led to reduced amounts of fibrils as shown by thioflavin S fluorescence and Congo red absorption spectroscopy, with a better effect observed for silibinin. In vivo bilateral injection of fibrils formed by incubation of insulin in the presence or absence of silibinin and trans-chalcone or insulin fibrils plus the compounds in rats' hippocampus was performed to obtain AD characteristics. Passive avoidance (PA) test showed that treatment with both compounds efficiently increased latency compared with the model group. Histological investigation of the hippocampus in the cornu ammonis (CA1) and dentate gyrus (DG) regions of the rat's brain stained with hematoxylin-eosin and thioflavin S showed an inhibitory effect on amyloid aggregation and markedly reduced amyloid plaques. In silico, a docking experiment on native and fibrillar forms of insulin provided an insight onto the possible binding site of the compounds. In conclusion, these small aromatic compounds are suggested to have a protective effect on AD.

SELECTION OF CITATIONS
SEARCH DETAIL